Free energy analysis and mechanism of base pair stacking in nicked DNA
نویسندگان
چکیده
The equilibrium of stacked and unstacked base pairs is of central importance for all nucleic acid structure formation processes. The stacking equilibrium is influenced by intramolecular interactions between nucleosides but also by interactions with the solvent. Realistic simulations on nucleic acid structure formation and flexibility require an accurate description of the stacking geometry and stability and its sequence dependence. Free energy simulations have been conducted on a series of double stranded DNA molecules with a central strand break (nick) in one strand. The change in free energy upon unstacking was calculated for all ten possible base pair steps using umbrella sampling along a center-of-mass separation coordinate and including a comparison of different water models. Comparison to experimental studies indicates qualitative agreement of the stability order but a general overestimation of base pair stacking interactions in the simulations. A significant dependence of calculated nucleobase stacking free energies on the employed water model was observed with the tendency of stacking free energies being more accurately reproduced by more complex water models. The simulation studies also suggest a mechanism of stacking/unstacking that involves significant motions perpendicular to the reaction coordinate and indicate that the equilibrium nicked base pair step may slightly differ from regular B-DNA geometry in a sequence-dependent manner.
منابع مشابه
The thermodynamic advantage of DNA oligonucleotide 'stacking hybridization' reactions: energetics of a DNA nick.
'Stacking hybridization reactions' wherein two or more short DNA oligomers hybridize in a contiguous tandem orientation onto a longer complementary DNA single strand have been employed to enhance a variety of analytical oligonucleotide hybridization schemes. If the short oligomers anneal in perfect head-to-tail register the resulting duplex contains a nick at every boundary between hybridized o...
متن کاملStacking interaction in the middle and at the end of a DNA helix studied with non-natural nucleotides.
Base stacking is important for the base pair interaction of a DNA duplex, DNA replication by polymerases, and single-stranded nucleotide overhangs. To study the mechanisms responsible for DNA stacking interactions, we measured the thermal stability of DNA duplexes containing a non-natural nucleotide tethered to a simple aromatic hydrocarbon group devoid of dipole moments and hydrogen bonding si...
متن کاملA molecular dynamics simulation study of coaxial stacking in RNA.
We report on unrestrained molecular dynamics simulations of an RNA tetramer binding to a tetra-nucleotide overhang at the 5'-end of an RNA hairpin (nicked structure) and of the corresponding continuous hairpin with Na+ as counterions. The simulations lead to stable structures and in this way a structural model for the coaxially stacked RNA hairpin is generated. The stacking interface in the coa...
متن کاملRelaxation of DNA curvature by single stranded breaks: Simulations and experiments
The recently proposed compressed backbone theory suggested that the intrinsic curvature in DNA can result from a geometric mismatch between the specific backbone length and optimal base stacking orientations. It predicted that the curvature in A-tract repeats can be relaxed by introducing single stranded breaks (nicks). This effect has not been tested earlier and it would not be accounted for b...
متن کامل5-Methylation of cytosine in CG:CG base-pair steps: a physicochemical mechanism for the epigenetic control of DNA nanomechanics.
van der Waals density functional theory is integrated with analysis of a non-redundant set of protein-DNA crystal structures from the Nucleic Acid Database to study the stacking energetics of CG:CG base-pair steps, specifically the role of cytosine 5-methylation. Principal component analysis of the steps reveals the dominant collective motions to correspond to a tensile "opening" mode and two s...
متن کامل